Stereochemistry of Serotonin Receptor Ligands from Crystallographic Data. Crystal Structures of NAN-190.HBr, 1-Phenylbiguanide, MDL 72222 and Mianserin.HCl and Selectivity Criteria towards 5-HT₁, 5-HT₂ and 5-HT₃ Receptor Subtypes

Alessandro Dalpiaz, Valeria Ferretti, Paola Gilli and Valerio Bertolasi*

Dipartimento di Chimica and Centro di Strutturistica Diffrattometrica, Università di Ferrara, I-44100 Ferrara, Italy. E-mail: m38a@icineca.cineca.it

(Received 14 July 1995; accepted 27 October 1995)

Abstract

The crystal and molecular structures of the following serotoninergic drugs have been determined: (1) 1-(2methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine hydrobromide hemihvdrate (NAN-190.HBr), $C_{23}H_{28}N_3O_3^+$.Br⁻.1/2H₂O, $M_r = 483.42$, monoclinic, C2/c, a = 21.916(4), b = 15.207(2), c = 14.052(2) Å, $\beta = 101.56(1)^{\circ}, V = 4588(1) \text{\AA}^3, Z = 8, D_x =$ 1.40 Mg m⁻³, λ (Mo K α) = 0.71069 Å, μ = 1.823 mm⁻¹, F(000) = 2008, T = 295 K, R = 0.035 for 2617observed reflections; (2) N-phenylimidocarbonimidic diamide (1-phenylbiguanide), $C_8H_{11}N_5$, $M_r = 177.21$, monoclinic, $P2_1/c$, a = 9.781(2), b = 35.040(5), c = 11.000(2) Å, $\beta = 97.72(1)^{\circ}$, V = 3736(1) Å³, $Z = 16, D_x = 1.26 \text{ Mg m}^{-3}, \lambda(\text{Mo } K\alpha) = 0.71069 \text{ Å},$ $\mu = 0.084 \text{ mm}^{-1}, F(000) = 1504, T = 295 \text{ K}, R =$ 0.070 for 3407 observed reflections; (3) 8-methyl-8azabicyclo[3.2.1.]oct-3-yl 3,5-dichlorobenzoate (MDL 72222), C₁₅H₁₇Cl₂NO₂, $M_r = 314.21$, triclinic, $P\bar{1}$, a = $8.480(3), b = 9.840(3), c = 10.158(4) \text{ Å}, \alpha = 90.04(3),$ $\beta = 111.77(3), \gamma = 105.07(3)^{\circ}, V = 755.6(5) \text{ Å}^3,$ Z = 2, $D_x = 1.38 \text{ Mg m}^{-3}$, λ (Mo $K\alpha$) = 0.71069 Å, $\mu = 0.430 \text{ mm}^{-1}$, F(000) = 328, T = 295 K, R = 0.070for 1685 observed reflections; (4) 1,2,3,4,10,14bhexahydro-2-methyldibenzo[c,f]pyrizino[1,2-a]azepine hydrochloride (mianserin.HCl), $C_{18}H_{21}N_2^+.Cl^-$, $M_r =$ 300.83, monoclinic, $P2_1/a$, a = 9.014 (2), b = 14.917 (2), c = 12.412(2) Å, $\beta = 108.84(1)^\circ$, V = 1579.5(5) Å³, Z = 4, $D_x = 1.26 \text{ Mg m}^{-3}$, λ (Mo $K\alpha$) = 0.71069 Å, $\mu = 0.237 \text{ mm}^{-1}, F(000) = 640, T = 295 \text{ K}, R = 0.063$ for 1493 observed reflections. A systematic structural analysis of the present compounds and others known to interact with the 5-HT₁, 5-HT₂ and 5-HT₃ receptors allows to identify their similarities with the endogenous ligand serotonin (5-HT) and the stereochemical differences which determine selectivity for the various receptor subtypes. The pharmacophoric feature for 5-HT receptor binding is identified in a constant-length vector linking an aromatic ring with a protonated nitrogen, while specific affinities for receptorial subtypes and the nature of the effect appear to be modulated by the dimensions of the substituents at nitrogen.

1. Introduction

The endogenous ligand 5-hydroxytryptamine (5-HT or serotonin) is involved in several physiological events occurring at the peripheral level and in the central nervous system by interacting with specific serotoninergic receptors. In particular, it has been recognized that serotonin plays a role in various types of pathological conditions such as anxiety, depression, aggressivness, schizophrenia, suicidal behaviour, panic and autism (Zifa & Fillion, 1992).

On the basis of the binding data available for different agonists and antagonists, it has been postulated that there are several different subtypes of serotonin receptors localized in brain and peripheral tissues, and Bradley et al. (1987) have distinguished not less than three main classes of 5-HT receptors: 5-HT₁, 5-HT₂ and 5-HT₃. In particular, 5-HT_{1A} and 5-HT_{1B} receptor subtypes have been well characterized by radioligand binding assays by Pazos & Palacios (1985). The former selectively binds the agonist 8-OH-DPAT [8-hydroxy-2-(di-npropylamino)tetralin (Middlemiss & Sozard, 1983)] and it is generally accepted that these receptors are involved in psychiatric disorders such as depression (Fuller & Robertson, 1991) and anxiety (Barrett & Vanover, 1993). Although three 5-HT₂ receptor subtypes have been proposed, only one $(5-HT_{2A})$ has been well typified by its pharmacological profile, that is by the specific binding of the antagonist ketanserin {3-[2-[4-(4-fluorobenzoyl)-1piperdinyl]ethyl]-2,4(1H,3H)-quinazolinedione (Leysen, Niemegeers, Van Nueten & Laudron, 1982). 5-HT₂ receptor antagonists have been used with success in the clinical management of anxiety (Ceulemans, Hoppenbrouwers, Gelders & Reyntjens, 1985) and schizophrenia (Gelders, 1989). While 5-HT₁ and 5-HT₂ receptors are known to produce a modification of the level of a second messanger, e.g. c-AMP (adenosine monophosphate, cyclic) and IP₃ (phosphoinositide), respectively, 5-HT₃ is a neuronal receptor directly coupled with an ion channel permeant to Na⁺, K⁺, Ca^{2+} and other cations (Peters, Malone & Lambert, 1992) which is selectively blocked by the antagonist MDL 72222 (Boess & Martin, 1994). Antagonists at the 5-HT₃ receptor are putatively useful in the treatment of brain disorders, including those produced by drug and alcohol abuse (Kilpatrick, Brunce & Tyers, 1990; Carboni, Acquas, Leone, Perezzani & Di Chiara, 1988).

These findings have stimulated research on pharmacological agents capable of selective interaction with 5-HT receptor subtypes. Hibert, McDermott, Middlemiss, Mir & Fozard (1989) suggested that the structural features defining the 5-HT_{1A} receptor pharmacophore include an aromatic ring and a strongly basic N atom. Schmidt & Peroutka (1989) proposed a model of the 5-HT₃ receptor pharmacophore using three-dimensional computer analysis of a number of compounds of high affinity and selectivity. Several recent structural analyses of 5-HT₃ antagonists have been found to agree with the model and point to three main pharmacophoric elements: an aromatic ring, a carbonyl, or analogous function, and a basic N atom (Gozlan & Langlois, 1992).

In the present paper the crystal structures of a 5-HT₁ receptor antagonist, NAN-190.HBr, a 5-HT₃ agonist, 1phenylbiguanide, a 5-HT₃ antagonist, MDL 72222, and a non-selective 5-HT agent, mianserin.HCl, are reported and compared with those found in the recent literature, with the aim of confirming previous hypotheses on the common stereochemical vector responsible for the serotoninergic activity and, possibly, to find the factors determining the selectivity for 5-HT₁, 5-HT₂ and 5-HT₃ receptors.

2. Experimental

The four compounds were purchased from Research Biochemical International (RBI), Amersham Italia S.r.l., Milan, Italy. Crystal data, data collection and refinement details are given in Table 1.* All intensities were corrected for Lorentz and polarization effects. Only the intensities of compound (1), NAN-190.HBr, were corrected for absorption effects, using the scan method. The structures were solved by direct methods using the SIR88 (Burla et al., 1989) system of programs and all other calculations were accomplished using MolEN (Fair, 1990) and PARST (Nardelli, 1983). All molecules were refined by full-matrix least-squares. The refinements were carried out on F with anisotropic non-H atoms and isotropic H atoms. All H-atom positions were determined from the F syntheses calculated after the first cycles of the isotropic refinement.

3. Description of the structures

Final coordinates are given in Table 2 and a selection of bond distances, bond angles and torsion angles in Table 3. ORTEPII (Johnson, 1976) views of the four compounds are shown in Figs. 1-4.

In compound (1), NAN-190.HBr, the piperazine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of Q = 0.579(3) Å, $\varphi = -177 (3)^\circ$, $\theta = 4.8 (3)^\circ$. The protonated N2 atom displays a C-N2-C average angle of 111(1)° and an average C-N2 distance of 1.498(3)Å, while the other sp^{3} hybridized N3 atom bonded to a Csp^{2} atom shows a smaller degree of pyramidalization [C-N3-C average angle 113 (3)°] and a shorter C17-N3 distance, 1.417 (4) Å. These data indicate a small degree of π conjugation along the Nsp^3 — Csp^2 bond (for reference, Csp^2 —Nsp³ = 1.44 and C=N = 1.27 Å), in agreement with the observed values of the rotation angle τ around the C---N bond and of the degree of pyramidalization χ_N (Gilli, Bertolasi, Bellucci & Ferretti, 1986; Ferretti, Bertolasi, Gilli & Gilli, 1993). The actual values of τ and χ_N of 40.1 (2) and 51.8 (4)°, respectively, correspond to a medium rotation angle coupled with a high degree of pyramidalization of the nitrogen. τ and χ_N are defined as: $\tau = |\omega 1 + \omega 2|/2 = |(\pi - \omega 3) + (\pi - \omega 4)|/2$ ($0 \le \tau$ $\leq 90^{\circ}$) and $\chi_N = \omega 2 - \omega 3 + \pi \pmod{2\pi} = -\omega 1 + \omega 4 + \omega 4$ $\pi \pmod{2\pi}$ [$0 \le \chi_N \le 60^\circ$ (Dunitz & Winkler, 1975)], the torsion angles $\omega_1, \omega_2, \omega_3$ and ω_4 being defined in Table 3. The phthalimido moiety is almost planar $[\Sigma(\Delta/\sigma)^2 =$ 24.2] and forms with the plane of the phenyl group a dihedral angle of 2.59 (9)°. The Br⁻ ion is hydrogen bonded to the N2 protonated nitrogen and to the water molecule O1w with distances $Br \cdots N2 = 3.228(3)$ and $Br \cdots O1w = 3.367(2)$ Å.

The asymmetric unit of 1-phenylbiguanide (2) consists of four independent molecules in slightly different conformations displaying a tautomeric form, which allows the formation of a strong intramolecular N— $H \cdots N$ hydrogen bond [N $\cdots N$ average distance 2.66 (4) Å (Table 4)]. Since the two hydrogen-bonded nitrogens are at the ends of the -N=C-N=C-NH₂ heterodienic conjugated system which is formally equivalent to the β -diketone enol O=C-C=C-OH (Bertolasi, Gilli, Ferretti & Gilli, 1991) and ketohydrazone O=C-C=N-NH (Bertolasi et al., 1993) groups, the shortening of the N— $H \cdot \cdot \cdot N$ bonds can be imputed to an enhancement of hydrogen bond strength assisted by resonance. The crystal packing is mainly determined by a number of intermolecular N-H···N hydrogen bonds which are always resonance-assisted and imply one amine function and an imino C-N-C group. Both intra- and intermolecular interactions cooperate to produce an almost total π -delocalization along the C-N bonds of the biguanide fragment. The conformations of the three independent molecules A, B and C are similar, the biguanide group being rotated with respect to the phenyl group by angles $\tau_1 = 58.8(5)$, 62.0(6) and $56.2(6)^{\circ}$, respectively, while in molecule D the rotation is rather different with a τ_1 value of 85.0 (6)° (the angle τ_1 is defined as: $\tau_1 = l\omega 1 + \omega 2 \pm \omega$

^{*} Lists of atomic coordinates, anisotropic displacement parameters, complete geometry and structure factors have been deposited with the IUCr (Reference: NA0073). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

ALESSANDRO DALPIAZ et al.

Table 1. Experimental details

	(1)	(2)	(3)	(4)
Crystal data				
Chemical formula	$C_{22}H_{24}N_2O^+Br^- 1/2H_2O$	CuHuN	CurtherClaNOs	$C_{\rm M}H_{\rm N}N^+Cl^-$
Chemical formula weight	483 47	177 21	314 21	300.83
Cell setting	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	C_{2}/c	P_{2} , l_{c}	PI	P2. /a
a (Å)	21.016 (4)	0.781(2)	7 I 9 490 (2)	121/a
$L(\Lambda)$	15 207 (2)	25 040 (5)	0.840 (3)	$\frac{14}{2}$
$D(\mathbf{A})$	13.207 (2)	33.040 (3)	9.640 (3)	14.917(2)
- (⁰)	14.032 (2)	11.000 (2)	10.138 (4)	12.412 (2)
	90.00 (0)	90.00(0)	90.04 (3)	90.00 (0)
$\mathcal{B}(\mathbf{r})$	101.30(1)	97.72(1)	111.77 (3)	108.84 (1)
γ (1)	90.00 (0)	90.00 (0)	105.07 (3)	90.00 (0)
V (A')	4588 (1)	3/30(1)	/55.0 (5)	15/9.5 (5)
Z	8	16	2	4
D_x (Mg m ⁻¹)	1.40	1.26	1.38	1.26
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
Wavelength (A)	0.71069	0.71069	0.71069	0.71069
No. of reflections for cell	25	25	25	25
parameters				
θ range (°)	10-15	10-15	10-15	10-15
$\mu (\mathrm{mm}^{-1})$	1.823	0.0843	0.430	0.237
Temperature (K)	295	295	295	295
Crystal form	Prismatic	Prismatic	Prismatic	Prismatic
Crystal size (mm)	$0.52 \times 0.33 \times 0.17$	$0.48 \times 0.31 \times 0.21$	$0.48 \times 0.36 \times 0.19$	$0.47 \times 0.19 \times 0.07$
Crystal colour	Colourless	Colourless	Colourless	Colourless
Data collection				
Diffractometer	Enraf–Nonius CAD-4	Enraf–Nonius CAD-4	Enraf–Nonius CAD-4	Enraf–Nonius CAD-4
Data collection method	$\omega/2\theta$	$\omega/2\theta$	$\omega/2\theta$	$\omega/2\theta$
Absorption correction	ψ scan	None	None	None
T _{min}	0.75	-	-	-
T _{max}	0.992	_	-	-
No. of measured reflections	5765	9490	3478	3655
No. of independent reflections	5540	8990	3287	3437
No. of observed reflections	2617	3407	1685	1493
Criterion for observed	$I > 3\sigma(I)$	$I > 2\sigma(I)$	$l > 3\sigma(l)$	$I > 2\sigma(I)$
reflections				
R _{int}	0.016	0.033	0.018	0.024
$\theta_{\rm max}$ (°)	28	28	27	27
Range of h, k, l	$-29 \rightarrow h \rightarrow 29$	$0 \rightarrow h \rightarrow 12$	$-10 \rightarrow h \rightarrow 10$	$0 \rightarrow h \rightarrow 11$
	$0 \rightarrow k \rightarrow 20$	$0 \rightarrow k \rightarrow 46$	$-12 \rightarrow k \rightarrow 12$	$0 \rightarrow k \rightarrow 19$
	$0 \rightarrow l \rightarrow 18$	$-14 \rightarrow l \rightarrow 14$	$0 \rightarrow l \rightarrow 13$	$-15 \rightarrow l \rightarrow 15$
No. of standard reflections	3	3	3	3
Frequency of standard	120	120	120	120
reflections				
Deference				
Rennement		5		
Refinement on	F	F	r 0.070	r 0.072
R	0.035	0.070	0.070	0.063
wR	0.036	0.073	0.082	0.051
S	1.37	1.63	1.73	1.61
No. of reflections used in	2617	3407	1685	1493
refinement	202	4.45	240	274
No. of parameters used	392	645	249	
H-atom treatment	All H-atom parameters refined	All H-atom parameters refined	All H-atom parameters refined	All H-atom parameters refined
weighting scheme	$w = 4F^{-}/[\sigma^{-}(F_{o}^{2}) + (0.03F_{o}^{2})^{2}]$	$w = 4F^{-}/[\sigma^{-}(F_{o}) + (0.05F_{o}^{2})^{2}]$	$w = 4F^{-}/[\sigma^{-}(F_{o}^{*}) + (0.0/F_{o}^{*})^{*}]$	$w = 4r^{-}/[\sigma(r_{o}^{-}) + (0.02r_{o}^{-})^{-}]$
$(\Delta / \sigma)_{\text{max}}$	0.01	0.03	0.03	0.04
$\Delta \rho_{\text{max}}$ (e A ()	0.15	0.28	0.65	0.50
$\Delta \rho_{\min} (e A^{-1})$	-0.18	-0.30	-0.50	-0.25
Extinction method	None	None	None	None
Source of atomic scattering	Cromer & Waber (1974)	Cromer & Waber (1974)	Cromer & Waber (1974)	Cromer & Waber (1974)
factors				

 π l/2, the torsion angles ω l and ω 2 being defined in Table 3).

Compound (3), MDL 72222, contains a planar dichlorobenzoate group linked to a tropanyl moiety. The piperidine ring N1—C3—C2—C1—C7—C6 is rotated with respect to the benzoate group by the angle $\tau_2 = 54.0(3)^\circ$ [τ_2 being defined by the

two torsion angles $\omega 1$ and $\omega 2$ (Table 3) as: $\tau = l\omega 1 + \omega 2 + \pi l/2$] and adopts a mixed chair-envelope ${}^{1}C_{4}{}^{-1}E$ conformation with puckering parameters Q = 0.642 (4) Å, $\varphi = 1.7$ (8) and $\theta = 28.5$ (4)°, while the fused pyrrolidine N1—C3—C4—C5—C6 adopts an envelope ${}^{1}E$ conformation with puckering parameters Q = 0.440 (4) Å and $\varphi = 1.4$ (8)°. The C1—O1 bond is

Table 2. Fractional atomic coordinates and equivalent

0.2202 (1)

0.2498 (2) 0.2634 (2)

0.5358 (6)

0.4868 (7)

0.3591 (7)

C4C

C5C

C6C

0.8757 (5)

0.9412 (5)

0.9086 (5)

0.0623 (18)

0.0805 (25) 0.0859 (24)

Table 2 (cont.)

defined by means of the usual parameters $\tau = 46.2 (5)^{\circ}$ and $\chi_N = 47.5 (5)^{\circ}$; the distance 1.423 (5) Å is shorter

	isotropic d	isplacement p	parameters (A	.2)		x	у	z	$U_{\rm eq}$
		$(1/2)\sum \sum U$			C7 <i>C</i>	0.2735 (6)	0.2479 (2)	0.8102 (5)	0.0778 (23)
	U_{eq}	$= (1/3) \Sigma_i \Sigma_j U_{ij}$	$a_i^{\dagger} a_j^{\dagger} \mathbf{a}_i \cdot \mathbf{a}_j$.		C8C	0.3233 (5)	0.2187 (1)	0.7462 (5)	0.0608 (18)
					NID	(0.9783(4))	-0.1296(1)	1.0414 (4)	0.0641 (15)
	X 100 UB-	<u>y</u>	2	U_{eq}	N2D	0.7870(4)	-0.1373(1) = 0.0795(1)	1.1402 (5)	0.1009(19) 0.0449(14)
(1) INAIN Br	0.07510.(1)	0.08432 (3)	0.62029 (2)	0.0629 (1)	N4D	0.8214 (4)	-0.0729(1)	0.8773 (4)	0.0796(18)
01	0.07510(1)	0.08452(5)	0.02027(2) 0.1377(2)	0.0586 (8)	N5D	0.7969 (4)	-0.0250(1)	0.0775(4)	0.0642 (15)
$\frac{01}{02}$	0.0250(1) 0.1944(1)	0.4185 (2)	0.0353(2)	0.0669 (7)	CID	0.8675(4)	-0.1166(1)	1.0771 (4)	0.0468 (15)
03	0.26384 (9)	-0.2258(1)	-0.2232(2)	0.0564 (7)	C2D	0.8488 (5)	-0.0604(1)	0.9618 (4)	0.0466 (15)
NI	0.1152(1)	0.3419 (2)	0.0839 (2)	0.0424 (8)	C3D	1.0136 (5)	-0.1686(1)	1.0622 (5)	0.0591 (14)
N2	0.11769 (9)	-0.0391(2)	-0.0812(2)	0.0356 (7)	C4D	1.0864 (6)	-0.1810(2)	1.1706 (5)	0.0728 (23)
N3	0.1585(1)	-0.2001(2)	-0.1566 (2)	0.0378 (7)	C5D	1.1236 (6)	-0.2187 (2)	1.1860 (6)	0.0953 (21)
Cl	0.0601(1)	0.3611 (2)	0.1140 (2)	0.0425 (8)	C6D	1.0886 (7)	-0.2448(2)	1.0940 (7)	0.1034 (29)
C2	0.1459 (1)	0.4180 (2)	0.0635 (2)	0.0464 (8)	C7D	1.0167 (7)	-0.2329(2)	0.9881 (7)	0.1014 (27)
C3	0.1062 (1)	0.4919 (2)	0.0823 (2)	0.0431 (9)	C8D	0.9785 (6)	-0.1952 (2)	0.9711 (6)	0.0859 (24)
C4	0.0545 (1)	0.4579 (2)	0.1117 (2)	0.0415 (7)					
C5	0.0094 (2)	0.5119 (2)	0.1340 (2)	0.0551 (11)	(3) MD	L 72222	0.0022 (2)	0.2156.72	0.0742.(5)
C6	0.0166 (2)	0.6008 (2)	0.1268 (3)	0.0676(15)	CH	0.2957 (2)	0.0033 (2)	0.2156 (2)	0.0743(5)
C/	0.0674(2)	0.6355 (2)	0.0976 (3)	0.0692(13)	01	-0.3122(1)	0.1203(2) 0.5440(3)	0.1450(2) 0.1813(3)	0.0366 (3)
C8	0.1135 (2)	(1.3812(2))	0.0749(2) 0.0789(2)	0.0387(13) 0.0509(11)		0.4011 (3)	0.5440 (5)	0.1615(3) 0.1714(4)	0.0387(7)
C10	0.1392(1) 0.1068(1)	(1.2552(2))	-0.0078(2)	0.0309 (11)	02 NI	() 8721 (5)	0.0030(4)	() 3573 (4)	0.0440(15)
	0.1008(1) 0.1352(1)	0.2015(2)	-0.0094(2)	0.0460 (8)	CI	0.6721 (5)	0.6952 (4)	0.1896 (5)	0.0368 (13)
C12	0.0997(1)	0.0559(2)	-0.0906(2)	0.0424(8)	C_2	0.5749 (6)	0.7625 (5)	0.3414(6)	0.0492 (17)
CI3	0.0997(1) 0.1844(1)	-0.0554(2)	-0.0857(2)	0.0444(8)	C3	0.7500 (6)	0.7355 (5)	0.4293 (5)	0.0475 (18)
C14	0.1990 (1)	-0.1519(2)	-0.0789(2)	0.0471(7)	C4	0.7381 (6)	0.5781 (6)	0.4365 (5)	0.0479 (19)
C15	0.0938 (1)	-0.1892(2)	-0.1465(2)	0.0426 (8)	C5	0.7781 (6)	0.5370 (5)	0.3092 (6)	0.0523 (21)
C16	0.0759(1)	-0.0942(2)	-0.1559(2)	0.0432 (11)	C6	0.8060 (5)	0.6763 (5)	0.2404 (5)	0.0406 (15)
C17	0.1786(1)	-0.2872 (2)	-0.1686(2)	0.0393 (8)	C7	0.6371 (6)	0.6945 (5)	0.1309 (5)	0.0399 (20)
C18	0.2340(1)	-0.3002 (2)	-0.2023(2)	0.0441 (8)	C8	1.0576 (7)	0.8083 (7)	0.4523 (7)	0.0666 (25)
C19	0.2552 (1)	-0.3846 (2)	-0.2129 (2)	0.0571 (14)	C9	0.2349 (5)	0.5163 (5)	0.1739 (5)	0.0391 (16)
C20	0.2210 (2)	-0.4566 (2)	-0.1949 (3)	0.0607 (16)	C10	0.1567 (5)	0.3607 (5)	0.1721 (5)	0.0346 (15)
C21	0.1660 (2)	-0.4456 (2)	-0.1659 (3)	0.0572 (15)	C11	0.2540 (5)	0.2650 (5)	0.1899 (5)	0.0388 (16)
C22	0.1449 (1)	-0.3613 (2)	-0.1525 (2)	0.0509 (11)	C12	0.1743 (6)	0.1239 (5)	0.1932 (5)	0.0431 (19)
C23	0.3114 (2)	-0.2354(3)	-0.2786(3)	0.0675 (13)	C13	0.0003 (5)	0.0778 (5)	0.1791 (5)	0.0425 (16)
Olw	1/2	0.2825 (2)	1/4	0.0909 (16)	C14	-0.0938 (5)	0.1749 (5)	0.1602(5)	0.0391 (15)
(3) 1 DL	multinonida				CIS	-0.0190 (5)	0.3163 (3)	0.1551 (5)	0.0391 (10)
(2) 1-FI	0.9033 (4)	-0.03694(9)	0.6322 (3)	0.0428 (15)	(4) Mia	unserin HCl			
N2A	0.7235 (5)	-0.0175(1)	0.4839 (4)	0.0854 (15)	C	0.2165 (1)	0.6074 (1)	0.6211(1)	0.0640(5)
N3A	0.7846 (3)	0.0212(1)	0.6459 (3)	0.0404 (12)	NI	0.0896 (4)	0.4373 (2)	0.8773 (3)	0.0317 (11)
N4A	1.0118 (4)	0.0261 (1)	0.7519 (4)	0.0544 (14)	N2	-0.0637(4)	0.5412 (3)	0.6773 (3)	0.0369 (11)
N5A	0.8430 (4)	0.0689(1)	0.7810 (3)	0.0515 (15)	CI	0.0755 (4)	0.4008 (3)	0.7644 (3)	0.0310 (15)
CIA	0.8109 (4)	-0.0126(1)	0.5893 (4)	0.0436 (15)	C2	0.0637 (5)	0.2994 (3)	0.7480 (3)	0.0344 (16)
C2A	0.8821 (4)	0.0381 (1)	0.7251 (4)	0.0380 (15)	C3	0.0174 (5)	0.2401 (3)	0.8185 (4)	0.0342 (16)
C3A	0.9129 (4)	-0.0726(1)	0.5738 (4)	0.0447 (15)	C4	-0.0004(5)	0.2699 (3)	0.9296 (4)	0.0405 (16)
C4A	1.0337 (5)	-0.0839(1)	0.5355 (4)	0.0544 (16)	C5	0.2399 (5)	0.2714 (3)	1.1063 (4)	0.0436 (16)
C5A	1.0503 (5)	-0.1195 (2)	0.4885 (5)	0.0730 (22)	C6	0.3738 (5)	0.3128 (3)	1.1/53 (4)	0.0488 (18)
C6A	0.9479 (6)	-0.1440(2)	(0.4771(0))	(0.0954(24))	C/	0.4195 (5)	(1.3943(4))	1.1440 (4)	0.0405 (21)
C/A	0.8254(7)	-0.1347(2)	0.5118 (8)	0.1331(33) 0.1057(27)	C8	0.3299(5) 0.1020(4)	0.4341(3) 0.3037(3)	0.0747 (3)	0.0403 (13)
	0.8085 (0)	-0.0988(2)	0.3010(7) 0.2104(3)	0.1057(27) 0.0520(15)	C10	0.1929 (4)	0.3937(3) 0.3111(3)	1.0057(3)	0.0340(17) 0.0342(16)
N2R	0.3304(4) 0.7250(4)	0.0650(1)	0.0521(4)	0.0722 (15)	CU	0.1470 (5)	0.5350(3)	0.8750(4)	0.0403 (16)
N3R	0.7230(4) 0.6620(4)	0.0107(1)	0.1433(3)	0.0497 (15)	C12	-0.0385(5)	0.5757 (3)	0.7931 (4)	0.0411 (16)
N4B	0.4844 (4)	0.0048 (1)	0.2673 (4)	0.0539 (15)	C13	-0.2057(6)	0.5817 (4)	0.5928 (4)	0.0566 (17)
N5B	0.5948 (4)	-0.0474(1)	0.2027 (4)	0.0584 (15)	C14	-0.0692(5)	0.4421 (3)	0.6790 (4)	0.0408 (17)
C1B	0.6572 (5)	0.0497 (1)	0.1418 (4)	0.0468 (15)	C15	0.0871 (5)	0.2670 (3)	0.6502 (4)	0.0423 (16)
C2B	0.5781 (4)	-0.0096(1)	0.2040 (4)	0.0444 (15)	C16	0.0611 (6)	0.1776 (4)	0.6187 (4)	0.0506 (16)
C3B	0.5897 (5)	0.1111 (1)	0.1984 (4)	0.0512 (13)	C17	0.0154 (6)	0.1189 (3)	0.6868 (4)	0.0507 (17)
C4 <i>B</i>	0.7069 (6)	0.1330 (2)	0.2240 (5)	0.0704 (21)	C18	-0.0035 (5)	0.1502 (3)	0.7860 (4)	0.0449 (15)
C5B	().6984 (8)	0.1723 (2)	0.2208 (6)	0.1076 (28)					
C6B	().5764 (9)	0.1902 (2)	0.1915 (6)	0.1129 (32)					
C7B	0.4612 (7)	0.1691 (2)	0.1661 (5)	0.0966 (25)	in or	avial position	aiving rise t	o the endo co	nfiguration
C8 <i>B</i>	0.4646 (6)	0.1296 (2)	0.1687 (5)	0.0683 (19)	m an	i axiai position	, giving rise t		miguiation
NIC	0.4967 (4)	0.1/45(1)	0.7030 (3)	0.0494 (15)	of th	ne tropanyl m	oiety.		
N2C	0.5468 (4)	0.1330(1)	0.0/11(3)	0.0347 (13)	C	ompound (4).	mianserin.HC	I, contains a	piperazine
NSC NAC	0.5774 (4)	0.1113(1) 0.1445(1)	0.0625(5) 0.4947(3)	0.0630 (15)	bond	led to a nhem	vl ring as in	compound (1): the two
NSC NSC	0.5400 (4)	0.0816(1)	0.5028 (3)	0.0512 (15)	Joint		, ing as in	ugh or or -	i_{n} a_{n}
CIC	0.5408(4)	0.1423(1)	0.7494 (4)	0.0410 (15)	rings	s are, noweve	r, iusea inro	ugn an azep	mo group.
C2C	0.5723 (4)	0.1135 (1)	0.5613 (4)	0.0416 (16)	The	rotation of pi	iperazine with	n respect to	the phenyl
C3C	0.4537 (5)	0.2037 (1)	0.7768 (4)	0.0482 (14)	(C5-	-C10) and the	oyramidalizati	ion of its N1 a	atom can be
616	0 5250 10	0 2202 (1)	0 9757 (5)	0.0623 (18)			-		

Table 3. Selected bond distances (Å), bond angles (°) and torsion angles (°)

	torsion	angles (°)	
(1) NAN-190.HBr				
NI - CI	1 388 (4)	N2-C13	1 497	(3)
NI - C2	1.397 (4)	N2 - C16	1.503	(3)
N1-C9	1.455 (4)	N3-C14	1.459	(4)
C1-01	1.209 (4)	N3-C15	1.462	: (3)
C2-O2	1.207 (4)	N3-C17	1.417	(4)
N2-C12	1.496 (4)			
C1 N1 C2	111.0.(2)	C12 N2	C16 110.0	
CI = NI = C2	1237(2)	C13 = N2 = C14 = N3 = C14 = N3 = C14 = C	-C15 109.0	(2)
$C_{2}-N_{1}-C_{9}$	124.4 (3)	C14-N3-	-C17 = 113.7	(2)
C12-N2-C13	113.5 (2)	C15-N3-	-C17 116.6	(2)
C12-N2-C16	111.3 (3)			
CI NI CO C10			C17 C18	(7.4.(2))
$C_{1} = N_{1} = C_{9} = C_{10}$	1058(3)	CI4—N3-	-C17 - C18 - C17 - C12	$-67.4(3)\omega^{1}$
CU = C12 = N2 = C10	-625(3)	CI3-N3-	-C17-C22	$-12.9(4) \omega_2$
C11 - C12 - N2 - C	16 172.7 (2)	C15-N3-	-C17 - C18	$164.2(2) \omega 4$
(2) 1-Phenylbiguanid	e			
	Α	В	С	D
N1-C3	1.414 (5)	1.415 (5)	1.405 (6)	1.420 (5)
NI-CI	1.285 (5)	1.296 (6)	1.289 (5)	1.285 (6)
N2-C1	1.356 (6)	1.370 (6)	1.371 (6)	1.328 (6)
N3-C1	1.378 (5)	1.367 (5)	1.380 (5)	1.381 (5)
N3-C2	1.340 (5)	1.331 (6)	1.329 (6)	1.326 (6)
N4-C2	1.331 (5)	1.323 (6)	1.324 (5)	1.313 (7)
N5-C2	1.324 (5)	1.335 (5)	1.344 (5)	1.342 (5)
C3 N1 C1	120 4 (2)	120 8 (2)	121 2 (2)	110.2 (4)
$N_{1} = C_{1} = N_{2}$	120.4(3) 124.2(4)	120.8(3) 1217(4)	121.3(3) 124.2(4)	117.2(4)
N1 - C1 - N3	124.2(4) 124.7(3)	121.7 (4)	124.2 (4)	123.1(4) 1244(4)
$N_{2}-C_{1}-N_{3}$	1111(4)	123.0(4) 1124(3)	124.0(4) 110.8(4)	112 + (4) 112 5 (4)
C1 - N3 - C2	120.9(4)	121.2 (3)	121.1 (4)	119.3 (3)
$N_{3}-C_{2}-N_{4}$	125.3 (4)	125.3 (4)	124.9 (4)	126.3 (4)
N3-C2-N5	115.9 (4)	116.1 (3)	117.1 (4)	116.6 (4)
N4-C2-N5	118.7 (4)	118.6 (4)	118.0 (3)	117.1 (4)
64 63 NU 61	104.1.45		59.2 (1)	06.0.76
C4-C3-NI-CI	124.1 (4)	-64.5 (6)	58.3 (6)	$-86.0(6)\omega$
$C_8 - C_3 - N_1 - C_1$		120.6 (5)	-125.2 (5)	96.0 (6) ω2
$C_3 - N_1 - C_1 - N_3$	175.4 (4)	-1/8.2 (4)	1/0.1 (4) -	-1/8.7(4)
N1 - C1 - N3 - C2	24.0 (6)	11.0(7)	1.0 (0)	18(7)
CI-N3-C2-N4	.5.9 (0)	0.0(7)	5.0 (0)	-1.0(7)
(3) MDL 72222				
NI C8	1 470 (6)	C9 ())	1 2 2	7 (5)
NI = C3	1.470 (6)	C9-01	1.55	7 (3) 5 (7)
N1-C5	1.471 (7)	$C_{9} = C_{10}$	1.19	(7)
C1 - O1	1.485 (5)	0)010	1.49	9 (0)
ci ().				
C3-N1-C6	100.2 (4)	C1-01-	-C9 116.	8 (3)
C3-N1-C8	112.0 (4)	O1-C9-	-02 125.	2 (5)
C6-N1-C8	113.6 (4)	01-C9-	-C10 111.	0 (4)
OI - CI - C2	110.1 (4)	O2-C9-	-C10 123.	8 (5)
01 - C1 - C7	105.4 (3)			
C8-N1-C3-C2	162.7 (4)	C7—C1—	-01	-155.1 (4) w2
C8-N1-C3-C4	-76.2 (5)	C1-01-	-C9-C10 -	-177.7 (4)
C8 - N1 - C6 - C5	74 5 (5)	$01 - C_{9}^{0} -$	-C10C11	57(6)

0-11-00-05	/ ()	01-07-010	5.7 (0)
C8-N1-C6-C7	-164.5 (4)	Ol-C9-C10-C15	-175.8 (4)
C2-C1-O1-C9	83.1 (5) ωl		

(4) Mianserin.HCl

NI-CI	1.470 (5)	N2—C12	1.474 (6)
NI-C9	1.423 (5)	N2—C13	1.495 (6)
NI-CII	1.464 (5)	N2—C14	1.480 (6)
C1-N1-C9	118.2 (3)	$\begin{array}{c} C13 - N2 - C14 \\ N1 - C1 - C2 \\ C1 - C2 - C3 \\ C2 - C3 - C4 \\ C3 - C4 - C10 \end{array}$	112.9 (4)
C1-N1-C11	109.4 (3)		118.4 (3)
C9-N1-C11	115.7 (3)		124.4 (4)
C12-N2-C13	111.7 (4)		121.8 (4)
C12-N2-C14	109.3 (4)		111.3 (4)

Table 3 (cont.)

C1-N1-C9-C10	$-72.9(5) \omega l_{1}T_{1'}$	N1-C9-C10-C4	4.8 (6) T ₀
CII-NI-C9-C8	-19.6 (6) ω2	C3-C4-C10-C9	69.3 (5) T ₁
C1-N1-C9-C8	112.9 (4) ω3	C2-C3-C4-C10	-56.1 (6) T ₂
CI1-NI-C9-CI0	154.6 (4) ω4	C1-C2-C3-C4	$-10.2(7) T_3$
C9-N1-C1-C14	165.4 (4)	NI-CI-C2-C3	20.6 (6) T _{3'}
C9-NI-C1-C12	-161.3 (4)	C9-N1-C1-C2	43.1 (5) T _{2'}

Table 4. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	H···A	$D \cdot \cdot \cdot A$	<i>D</i> —H· · · A
(1) NAN-190.HBr				
N2—H2N···Br ⁱ	0.88 (3)	2.36 (3)	3.228 (3)	167 (3)
O1w—H1w···Br ⁱⁱ	0.84 (4)	2.53 (4)	3.367 (2)	174 (3)
(2) 1-Phenylbiguanide				
$N2A - H21A \cdot \cdot \cdot N5B^{iii}$	0.76 (4)	2.86 (3)	3.347 (6)	125 (3)
$N2A - H22A \cdot \cdot \cdot N4B^{iii}$	0.92 (4)	2.52 (5)	3.203 (6)	132 (4)
$N4A - H41A \cdot \cdot \cdot N1A^{iii}$	0.82 (4)	2.12 (4)	2.714 (5)	128 (3)
N5A—H52A···N3C ⁱⁱⁱ	().87 (4)	2.22 (4)	3.065 (5)	163 (4)
N4B—H41B···N1B ⁱⁱⁱ	0.89 (4)	1.95 (4)	2.647 (5)	134 (3)
$N4C - H41C \cdot \cdot \cdot N1C^{iii}$	0.93 (4)	1.90 (3)	2.607 (5)	131 (3)
$N5C - H51C \cdot \cdot \cdot N1B^{iii}$	0.90 (6)	2.39 (5)	3.224 (5)	153 (5)
N5C—H52C···N3A ⁱⁱⁱ	0.84 (3)	2.24 (4)	3.059 (5)	166 (3)
$N4D - H41D \cdot \cdot \cdot N1D^{iii}$	0.88 (4)	2.13 (3)	2.693 (5)	121 (3)
N4DH42D····N1A	0.90 (4)	2.07 (4)	2.960 (5)	169 (4)
$N5D - H51D \cdot \cdot \cdot N3A$	0.85 (4)	2.86 (4)	3.679 (5)	161 (4)
N5D−−H51D···N4A	0.85 (4)	2.91 (5)	3.670 (6)	150 (4)
N4AH42A···N3D ^{iv}	1.04 (4)	2.08 (5)	3.090 (5)	163 (4)
$N5A - H51A \cdot \cdot \cdot N1D^{iv}$	0.79 (3)	2.48 (3)	3.237 (5)	161 (3)
$N5B - H52B \cdot \cdot \cdot N3D^{v}$	0.88(4)	2.21 (4)	3.096 (6)	176 (4)
N4B—H42B····N3A ^{vi}	0.80(3)	2.31 (3)	3.056 (5)	156 (3)
$N5B - H51B \cdot \cdot \cdot N3C^{vi}$	0.80 (3)	2.41 (3)	3.170 (5)	161 (3)
$N2C - H22C \cdot \cdot \cdot N2B^{vii}$	0.90 (4)	2.61 (3)	3.427 (5)	151 (3)
$N5D - H52D \cdot \cdot \cdot N3B^{vii}$	0.92 (4)	2.07 (4)	2.951 (6)	162 (4)
$N2D - H22D \cdot \cdot \cdot N2C^{viii}$	0.85 (5)	2.48 (5)	3.260 (6)	152 (4)
(4) Mianserin.HCl				
N2—H2···Cl	1.04 (5)	1.96 (5)	2.996 (4)	175 (4)

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (iii) x, y, z; (iv) 2 - x, -y, 2 - z; (v) x, y, z - 1; (vi) 1 - x, -y, 1 - z; (vii) x, y, z + 1; (viii) 1 - x, -y, 2 - z.

than the mean pure single Csp^2 —Nsp³ bond of 1.44 Å (Ferretti, Bertolasi, Gilli & Gilli, 1993) and indicates some conjugation along the N1-C9 bond. The piperazine is in a chair conformation with the puckering parameters Q = 0.584 (4) Å, $\varphi = -4 (7)^{\circ}$ and $\theta = 176 (4)^{\circ}$. The seven-membered azepino ring assumes an approximate boat conformation with total puckering parameter $Q_T = 0.930(4)$ Å (Cremer & Pople, 1975) and asymme-Try parameter (Duax, Weeks & Rohrer, 1976) $\Delta C_s(C2) = \{ [T_0^2 + \sum_{i=1}^3 (T_i + T_{i'})^2]/4 \}^{1/2} = 8.85^\circ, \text{ indicating a} \}$ small deviation from the ideal geometry. The ring conformation can also be described (Gilli, Borea, Bertolasi & Sacerdoti, 1982) by the angles among the mean planes P1 = N1 - C9 - C10 - C4, P2 = N1 - C1 - C3 - C4 and P3 = C1 - C2 - C3, the stern (P1 - P2) and bow (P2- P3) angles assuming values of 58.7 (2) and 14.6 (3) $^{\circ}$, respectively. The angle between the two phenyl rings is $62.9(1)^\circ$. The chlorine ion is linked by a hydrogen bond to the protonated N2 atom with N2-Cl 2.996 (4) Å (Table 4).

3.1. Pharmacological implications

The endogenous ligand 5-HT (serotonin) contains a planar hydroxyindole group and a flexible ethylamino chain (see scheme of Table 5). The pharmacological studies quoted above agree in indicating that the receptor binding ability of serotonin is to be related to a hydrogen bond donated by the protonated amino group and to the capacity of the planar indole moiety to form charge-tranfer interactions with the receptor, as actually observed in the crystal structure of the serotonin picrate complex (Thewalt & Bugg, 1972), where the serotonin cation acts as a π -electron donor and the picrate anion as a π -electron acceptor. The ethylamino chain conformation strongly affects the distance between the phenyl group and the protonated nitrogen, as well as the hydrogen-bond stereochemistry, and is supposed to play an important role in determining the binding selectivity towards the different 5-HT receptor subtypes. A systematic search on the Cambridge Structural Database (Allen et al., 1979) allowed us to find eight serotonin derivatives which can be thought to represent the possible stable conformations of the flexible chain.

Fig. 1. ORTEPII (Johnson, 1976) view of the NAN-190 cation showing the thermal ellipsoids at 30% probability.

Fig. 2. ORTEPII (Johnson, 1976) view of molecule A of 1phenylbiguanide showing the thermal ellipsoids at 30% probability.

The data, reported in Table 5, show how different conformations can produce quite different distances between the two essential parts of serotonin, the phenyl ring and the aminic nitrogen, which range from 4.82 Å, for a gg, to 6.47 Å for a tt full-extended conformation. The possibility that this distance may have a relevant role in the definition of the stereochemical vector most suited to bind to each serotonin receptor subtype can be verified by comparing the crystal structures of all available 5-HT receptor ligands. An accurate analysis of the recent literature has made possible identification of 23 cases, most of which concern selective ligands

Fig. 3. ORTEPII (Johnson, 1976) view of MDL 72222 showing the thermal ellipsoids at 30% probability.

Fig. 4. ORTEPII (Johnson, 1976) view of the mianserin cation showing the thermal ellipsoids at 30% probability.

for 5-HT₁, 5-HT₂ and 5-HT₃ receptor subtypes. Their chemical formulae are summarized in Figs. 5, 6 and 7 and a selection of their geometrical parameters is given in Tables 6, 7 and 8.

The structures of 5-HT₁ ligands (Table 6 and Fig. 5), although belonging to several different chemical classes, display definite regularities. All molecules exhibit a protonated or protonable aminic nitrogen separated by a short chain of three or four atoms from a phenyl ring, with a N-phenyl centroid distance of 5.04-5.68 Å. These distances match those found in serotonin derivatives in their gg or tg conformations (Table 5) and their constancy is obtained because of heavy geometrical constraints. At least two atoms belonging to the short chain connecting the aminic nitrogen to the phenyl are in fact embedded in a cycle, with the consequence that changes in chain conformation cannot modify the N-phenyl centroid distance, but only the N⁺-H hydrogen bond direction. A general characteristic of these 5-HT1 drugs is that the protonated nitrogens can carry substituents formed by long and bulky chains, a feature which is also found in 5-HT₂ but not in 5-HT₃ ligands. Thus, it may be concluded that the stereochemical vector of 5-HT₁ activity consists of a protonated nitrogen, even

Fig. 6. Chemical formulae of 5-HT₃ agents of known crystal structure. The atoms which define the pharmacological common vector are linked by bold lines (p.w. = present work).

Table 5. Conformational and geometrical parameters (Å, °) of 5-HT (serotonin) derivatives

 φ_1 = Torsion angle 9-3-10-11. φ_2 = Torsion angle 3-10-11-N.

d(C-N) = distance between the centroid of phenyl ring and N atom belonging to R₂ group.

	Chemical name	Refcode	R 1	R_2	φ_1	φ_2	Conf.	d(C-N)
(s1)	Serotonin oxalate"	SERHOX	OH	NH ⁺	-171.7	179.7	tt	6.47
(s2)	5-Methoxy-(N,N)-dimethyltryptamine.HCl ^b	MOTYPT	OMe	NH(CH ₃) ⁺	161.5	-179.2	11	6.47
(s3)	Serotonin.creatinine sulfate ^c	HTRCRS	OH	NH ⁺	166.7	-172.6	11	6.40
(s4)	5-Hydroxy-(N,N)-dimethyltryptamined	BUFTEN	OH	N(CH ₃) ₂	-88.8	175.3	g1	5.96
(s5)	5-Methoxy tryptamine.5-methoxyindole-3-acetic acide	MIAMTA	OMe	NH ⁺	-168.5	70.2	1g	5.68
(s6)	5-Methoxy tryptamine.indole-3-acetic acid	IAAMTA	OMe	NH ⁺	-74.7	-64.8	88	5.20
(s7)	Serotonin picrate ¹	SERPIC	OH	NH ⁺	-67.5	-66.6	88	5.10
(s8)	5-Methoxy tryptamine ⁸	MXTRYP	OMe	NH ₂	63.3	54.7	88	4.82

(a) Amit, Mester, Klewe & Furberg (1978); (b) Falkenberg & Carlström (1971); (c) Karle, Dragonette & Brenner (1965); (d) Falkenberg (1972); (e) Sakaki et al. (1976); (f) Thewalt & Bugg (1972); (g) Quarles, Templeton & Zalkin (1976).

Table 6. Geometrical parameters (Å) for 5-HT₁ agents for compounds of Fig. 5, d(C-N) = distance between the centroid of a phenyl ring and a protonated or protonable nitrogen

	Pharmacological					
Drug name	profile	Refcode	d(C-N)	d(C - NI)	d(C1-N)	d(C2-N)
(a) (+) 8-OH DPAT.HBr	Agonist	GEHKAF	5.17			
(b) 8-OH DPAT.HCl	Agonist	SOTYUV	5.16			
(c) 8-MeO PAT.HCl	Agonist	SOTYOP	5.17			
(<i>d</i>)	Agonist	SIWBAB	5.17			
(<i>e</i>)	Agonist	GAYDAL	5.22			
(<i>f</i>)	Agonist	GAYDEP	5.20			
(g) D-LSD.o-I-Ph-COOH	Agonist n.s.*	LSDIBZ		5.13		
(<i>h</i>)	Agonist	WANCET			5.68	
(i) Eltoprazine.HCl	Agonist	KUNWED	5.65			
(j) NAN-190.HBr	Antagonist	p.w.			5.66	
(k) Metitepine maleate	Antagonist	÷‡			5.15	(3.66)
•	-				(7.68)	(6.17)
(1) Mianserin	Antagonist n.s. [†]	BUCVAW			5.66	5.06
(m) (+) Mianserin.HBr	Antagonist n.s.†	MIANSB			5.66	5.04
(n) Mianserin HCl	Antagonist n.s.†	p.w.			5.67	5.04

p.w. = Present work. *Non-selective agonist. †Non-selective antagonist. ‡Structure retrieved from recent literature and not yet included in the CSD files. (a) Karlson, Petterson, Sundell, Arvidsson & Hacksell (1988); (b, c) Kirby, McAlpine, Sawyer, Taylor & Blake (1992); (d) Mellin *et al.* (1991); (e, f) Mellin *et al.* (1988); (g) Baker, Chothia, Pauling & Weber (1972); (h) Okamoto, Fujii & Tomita (1993); (i) Verdonk, Kanters & Kroon (1992); (j) Present work; (k) Blaton, Peeters & De Ranter (1995b); (l) Van Meerssche & Declercq (1983); (m) Van Rij & Feil (1973); (n) present work.

Table 7. Geometrical parameters (Å) for 5-HT₃ agents for compounds of Fig. 6, d(C-N) = distance between the centroid of a phenyl ring and a protonated or protonable nitrogen

Ph	armacological			
Drug name	profile	Refcode	d(C-N)	d(C N5)
(a') MDL 72222.HSO3CH3	Antagonist	GAKPAJ	7.35	
(b') MDL 72222	Antagonist	p.w.	7.16	
(c') Metoclopramide.HCl	Antagonist	AMBZCL	6.09	
(d') Metoclopramide	Antagonist	METPRA	6.34	
(e')	Antagonist	*	7.37	
(f')	Antagonist	SUBTEO10	6.87	
(g') 1-Phenylbiguanide	Agonist	p.w.		6.94

p.w. = present work. * Structure retrieved from recent literature and not yet included in the CSD files. (a') Carpy, Lemrabett & Colleter (1988); (b') present work; (c') Blaton, Peeters, De Ranter, Denisoff & Molle (1980); (d') Cesario, Pascard, El Moukhtari & Jung (1981); (c') Kuroita *et al.* (1994); (f') Ammon *et al.* (1993); (g') present work.

alkylated by relatively long chains, having a separation of 5–6 Å from the centroid of an aromatic ring. Besides providing a great affinity for the 5-HT₁ receptor, this vector seems able to ensure a high 5-HT₁ selectivity of compounds in Fig. 5; mianserin and D-LSD being the only ones able to also bind to 5-HT₂ and 5-HT₃ receptors with some affinity.

The pharmacophoric part for selective 5-HT₃ receptor binding seems to require three main features: an aromatic ring, a basic nitrogen and a hydrogen-bond acceptor. This latter functional group is provided by a carbonyl in almost all compounds and by an iminic nitrogen (N_3) in 1-phenylbiguanide. The basic nitrogen and the phenyl ring are separated by a chain of five or six atoms, which gives values of 6.09–7.37 Å for the N—phenyl centroid distances. In these ligands the chain conformation is not

Table 8. Geometrical parameters (Å) for 5-HT₂ agents for compounds of Fig. 7, d(C-N) = distance between the centroid of a phenyl ring (or heterocycle) and a basic nitrogen

	Pharmacological				
Drug name	profile	Refcode	d(C1-N)	d(C2-N)	d(C2 - N1)
(a") Ketanserin	Antagonist	BERGUA	7.26	6.67	
(b") Pirenperone	Antagonist	*	7.19	6.72	
(c'') Risperidone	Antagonist	WASTEP	7.28	6.76	
(d") Cinanserin.HCl	Antagonist	DIPHUF10	6.10		6.20
(e'') Metergoline	Antagonist	LYSDOL	7.66	5.74	

* Structure retrieved from recent literature and not yet included in the CSD files. (a") Peeters, Blaton & De Ranter (1982); (b") Blaton, Peeters & De Ranter (1995a); (c") Peeters, Blaton & De Ranter (1993); (d") Peeters, Blaton & De Ranter (1986); (e") Foresti Serantoni, Sabatino, Riva di Sanseverino & Sheldrick (1977).

fixed by annulation (as in the previous case), but is, likewise, partially constrained by the partial double-bond character or the formation of intramolecular hydrogen bonds. MDL 72222 includes a planar benzoate fragment, while Metoclopramide and the two 2,3-dihydrobenzofuran-7-carboxamide derivatives (e' and f' in Table 7 and Fig. 6) contain an amidic group liable to form an intramolecular N—H···O bond with an oxygenated *ortho*-substituent on the phenyl ring; the biguanide group of structure (3) is kept planar and conformationally rigid by a similar intramolecular N—H···N hydrogen bond. A final important characteristic of these 5-HT₃ ligands is that the nitrogen does not allow, at variance with 5-

Fig. 7. Chemical formulae of 5-HT₂ agents of known crystal structure. The atoms which define the pharmacological common vector are linked by bold lines. HT₁ receptor ligands, substituents bulkier than an ethylic group.

Also, 5-HT₂ receptor ligands (Fig. 7, Table 8) include the aromatic ring-basic nitrogen leit-motif, which is typical of 5-HT activity, although, in some cases, the phenyl is replaced by a heterocyclic ring (e.g. in pirenperone and risperidone). The chains between the centroid of the ring (marked as 1 in Fig. 7) and the nitrogen, as in 5-HT₃ receptor ligands, display distances in the range 6.10-7.66 Å and some degree of conformational freedom. The factor determining the selectivity of these compounds for the 5-HT₂ receptor can be singled out in the systematic occurrence of very large N-substituents endowed with a further phenyl group (marked as 2) which could play a specific role in the binding process.

In summary, the analysis carried out on the available crystal structures of 5-HT₁, 5-HT₂ and 5-HT₃ selective drugs suggests that the three types of ligands can be discriminated in terms of only two factors: (i) the length of the stereochemical vector connecting the *centroid of an aromatic ring* (or a heterocycle for 5-HT₂ ligands) and a *basic nitrogen*, and (ii) the dimensions of the substituents at this nitrogen. Allowing the vector to assume the values of *short* and *long* and the *N*-substituent those of *small* and *large*, the selective ligands of the three receptor subtypes could be tentatively defined as: 5-HT₁ = *short*, *large*; 5-HT₂ = *long*, *large*; 5-HT₃ = *long*, *small*.

The authors thank Professor G. Gilli (University of Ferrara, Italy) for useful discussion, the Italian Ministry for University and Scientific and Technological Research (MURST, Rome: 40 and 60% projects) for financial support and the Italian Service for Diffusion of Crystallographic Data (CNR, Parma) for access to CSD files.

References

- Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). Acta Cryst. B35, 2331–2339.
- Amit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. Ser. A, 32, 267–270.
- Ammon, H. L., Youssefyeh, R. D., Airey, J. E., Studt, W. L., Campbell, H. F., Powers, M. R. & Golec, F. A. (1993). Acta Cryst. C49, 1551–1554.

- Baker, R. W., Chothia, C., Pauling, P. & Weber, H. P. (1972). Science, 178, 614–617.
- Barrett, J. E. & Vanover, K. E. (1993). *Psycopharmacologia*, **112**, 1–12.
- Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223–2228.
- Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.
- Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995a). Acta Cryst. C51, 533-535.
- Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995b). Acta Cryst. C51, 777-780.
- Blaton, N. M., Peeters, O. M., De Ranter, C. J., Denisoff, O. & Molle, L. (1980). Cryst. Struct. Commun. 9, 857-864.
- Boess, F. G. & Martin I. L. (1994). Neuropharmacology, 33, 275-317.
- Bradley, P. B., Engel, G., Feniuk, W., Fozard, J. R., Humphrey, P. P. A., Middlemiss, D. N., Mylecharane, E. J., Richardson, B. P. & Saxena, P. R. (1987). *Neuropharmacology*, 25, 563-576.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo D. (1989). J. Appl. Cryst. 22, 389-393.
- Carboni, E., Acquas, E., Leone, P., Perezzani, L. & Di Chiara, G. (1988). Eur. J. Pharmacol. 151, 159-160.
- Carpy, A., Lemrabett, A. & Colleter, J. C. (1988). Acta Cryst. C44, 495-497.
- Cesario, M., Pascard, C., El Moukhtari, M. & Jung, L. (1981). Eur. J. Med. Chem. Chim. Ther. 13, 13-20.
- Ceulemans, D. L. S., Hoppenbrouwers, M. L. J. A., Gelders, Y. G. & Reyntjens, M. (1985). *Pharmacopsychiatry*, 18, 303-305.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A, pp. 149–150. Birmingham: Kynoch Press.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Top. Stereochem. 9, 271-383.
- Dunitz, J. D. & Winkler, F. K. (1975). Acta Cryst. B31, 251–263.
- Fair, C. K. (1990). MolEN, An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Falkenberg, G. (1972). Acta Cryst. B28, 3219-3228.
- Falkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411-418.
- Ferretti, V., Bertolasi, V., Gilli, P. & Gilli, G. (1993). J. Phys. Chem. 97, 13568-13574.
- Foresti Serantoni, E., Sabatino, P., Riva di Sanseverino, L. & Sheldrick, G. M. (1977). Acta Cryst. B33, 2899–2902.
- Fuller, R. W. & Robertson, D. W. (1991). Annu. Rep. Med. Chem. 26, 23-32.
- Gelders, Y. G. (1989). Br. J. Psychiatry, 155, Suppl. 33-36.
- Gilli, G., Bertolasi, V., Bellucci, B. & Ferretti, V. (1986). J. Am. Chem. Soc. 108, 2420-2424.

- Gilli, G., Borea, P. A., Bertolasi, V. & Sacerdoti, M. (1982). Molecular Structure and Biological Activity, edited by J. F. Griffin & W. L. Duax, pp. 259–276. New York: Elsevier Biomedical.
- Gozlan, H. & Langlois, M. (1992). Central and Peripheral 5-HT₃ Receptors, edited by M. Hamon, pp. 59–88. London: Academic Press.
- Hibert, M. F., McDermott, I., Middlemiss, D. N., Mir, A. K. & Fozard, J. R. (1989). Eur. J. Med. Chem. 24, 31-37.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Karle, I. L., Dragonette, K. S. & Brenner, S. A. (1965). Acta Cryst. 19, 713–716.
- Karlsson, A., Petterson, C., Sundell, S., Arvidsson, L.-E. & Hacksell, U. (1988). Acta Chem. Scand. B, 42, 231-236.
- Kilpatrick, G. J., Brunce, K. T. & Tyers, M. B. (1990). Med. Res. Rev. 47, 441-475.
- Kirby, B. J., McAlpine, A. S., Sawyer, L., Taylor, P. & Blake, A. J. (1992). Acta Cryst. C48, 519–523.
- Kuroita, T., Yasumoto, M., Inaba, K., Sakamori, M., Shuzo, T. & Kawakita, M. (1994). *Chem. Pharm. Bull.* 42(1), 95– 100.
- Leysen, J. E., Niemegeers, J. M., Van Nueten, J. M. & Laudron, P. M. (1982). *Mol. Pharmacol.* 21, 301–314.
- Mellin, C., Bjork, L., Karlen, A., Johansson, A. M., Sundell, S., Nelson, D. L., Anden, N.-E. & Hacksell, U. (1988). J. Med. Chem. 31, 1130-1140.
- Mellin, C., Vallgorda, J., Nelson, D. L., Bjork, L., Yu, H., Anden, N.-E., Csöregh, I., Arvidsson, L.-E. & Hacksell, U. (1991). J. Med. Chem. 34, 497-510.
- Middlemiss, D. N. & Sozard, J. R. (1983). Eur. J. Pharmacol. 90, 151-155.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Okamoto, K., Fujii, S. & Tomita, K. (1993). Acta Cryst. C49, 1125-1127.
- Pazos, A. & Palacios, J. M. (1985). Brain Res. 346, 205-209.
- Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1982). Cryst. Struct. Commun. 11, 375-379.
- Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1986). Acta Cryst. C42, 1233-1235.
- Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1698–1700.
- Peters, J. A., Malone, H. M. & Lambert, J. J. (1992). Trends Pharmacol. Sci. 13, 391–397.
- Quarles, W. G., Templeton, D. H. & Zalkin, A. (1976). Acta Cryst. B30, 95-98.
- Sakaki, T., Sogo, A., Wakahara, A., Kanai, T., Fujiwara, T. & Tomita, K. (1976). Acta Cryst. B32, 3235-3242.
- Schmidt, A. W. & Peroutka, S. J. (1989). Mol. Pharmacol. 36, 505-511.
- Thewalt, U. & Bugg, C. E. (1972). Acta Cryst. B28, 82-92.
- Van Meerssche, M. & Declercq, J.-P. (1983). Bull. Soc. Chim. Belg. 92, 307-311.
- Van Rij, C. & Feil, D. (1973). Tetrahedron, 29, 1891-1893.
- Verdonk, M. L., Kanters, J. A. & Kroon, J. (1992). Acta Cryst. C48, 2271–2273.
- Zifa, E. & Fillion, G. (1992). Pharmacol. Rev. 44, 401-458.